3.12.70 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx\) [1170]

3.12.70.1 Optimal result
3.12.70.2 Mathematica [B] (verified)
3.12.70.3 Rubi [A] (verified)
3.12.70.4 Maple [B] (verified)
3.12.70.5 Fricas [A] (verification not implemented)
3.12.70.6 Sympy [F(-1)]
3.12.70.7 Maxima [B] (verification not implemented)
3.12.70.8 Giac [F]
3.12.70.9 Mupad [F(-1)]

3.12.70.1 Optimal result

Integrand size = 37, antiderivative size = 174 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\frac {(19 A+3 C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-7 C) \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

output
-1/4*(A+C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(5/2)-1/16*(9*A- 
7*C)*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)+1/32*(19*A+3*C 
)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c)) 
^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)
 
3.12.70.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(566\) vs. \(2(174)=348\).

Time = 10.24 (sec) , antiderivative size = 566, normalized size of antiderivative = 3.25 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=-\frac {A \sqrt {1+\sec (c+d x)} \left (\frac {8 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))^{5/2}}+\frac {18 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x))^{3/2}}+\frac {19 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}\right )}{32 a^2 \sqrt {a (1+\sec (c+d x))}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \left (-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (1+\sec (c+d x))^{5/2}}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{16 d (1+\sec (c+d x))^{3/2}}+\frac {3 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 d \sqrt {1+\sec (c+d x)}}+\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 d \sqrt {1+\sec (c+d x)}}+\frac {3 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{16 d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}+\frac {3 \arcsin \left (\sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{16 d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}-\frac {3 \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)}{16 \sqrt {2} d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}\right )}{a^2 \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^ 
(5/2)),x]
 
output
-1/32*(A*Sqrt[1 + Sec[c + d*x]]*((8*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(1 
 + Sec[c + d*x])^(5/2)) + (18*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(1 + Sec 
[c + d*x])^(3/2)) + (19*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 
 - Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*S 
qrt[1 - Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]])))/(a^2*Sqrt[a*(1 + Sec[c + d 
*x])]) + (C*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]*( 
-1/4*(Sec[c + d*x]^(7/2)*Sin[c + d*x])/(d*(1 + Sec[c + d*x])^(5/2)) - (Sec 
[c + d*x]^(7/2)*Sin[c + d*x])/(16*d*(1 + Sec[c + d*x])^(3/2)) + (3*Sec[c + 
 d*x]^(3/2)*Sin[c + d*x])/(16*d*Sqrt[1 + Sec[c + d*x]]) + (Sec[c + d*x]^(5 
/2)*Sin[c + d*x])/(16*d*Sqrt[1 + Sec[c + d*x]]) + (3*ArcSin[Sqrt[1 - Sec[c 
 + d*x]]]*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x] 
]) + (3*ArcSin[Sqrt[Sec[c + d*x]]]*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d* 
x]]*Sqrt[1 + Sec[c + d*x]]) - (3*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[ 
1 - Sec[c + d*x]]]*Tan[c + d*x])/(16*Sqrt[2]*d*Sqrt[1 - Sec[c + d*x]]*Sqrt 
[1 + Sec[c + d*x]])))/(a^2*Sqrt[a*(1 + Sec[c + d*x])])
 
3.12.70.3 Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.270, Rules used = {3042, 4753, 3042, 4573, 27, 3042, 4500, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sec (c+d x)^2}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{5/2}}dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x)} \left (C \sec ^2(c+d x)+A\right )}{(\sec (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int -\frac {\sqrt {\sec (c+d x)} (a (7 A-C)-2 a (A-3 C) \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x)} (a (7 A-C)-2 a (A-3 C) \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a (7 A-C)-2 a (A-3 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 4500

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{4} (19 A+3 C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{4} (19 A+3 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {(19 A+3 C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 d}-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {(19 A+3 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {a (9 A-7 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\right )\)

input
Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)) 
,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/4*((A + C)*Sec[c + d*x]^(3/2)*Si 
n[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/2)) + (((19*A + 3*C)*ArcTanh[(Sqrt[ 
a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/( 
2*Sqrt[2]*Sqrt[a]*d) - (a*(9*A - 7*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2* 
d*(a + a*Sec[c + d*x])^(3/2)))/(8*a^2))
 

3.12.70.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4500
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] + Simp[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1))   Int[(a + b*Csc[e + 
 f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n} 
, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && LeQ[ 
m, -1]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.12.70.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(437\) vs. \(2(145)=290\).

Time = 0.78 (sec) , antiderivative size = 438, normalized size of antiderivative = 2.52

method result size
default \(-\frac {\left (19 A \sqrt {2}\, \cos \left (d x +c \right )^{2} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+3 C \sqrt {2}\, \cos \left (d x +c \right )^{2} \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+38 A \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+26 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+6 C \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-6 C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+19 A \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+18 A \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+3 C \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-14 C \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{32 a^{3} d \left (1+\cos \left (d x +c \right )\right )^{3} \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(438\)

input
int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/32/a^3/d*(19*A*2^(1/2)*cos(d*x+c)^2*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+co 
s(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+3*C*2^(1/2)*cos(d*x+c)^2*arctan(1/2*s 
in(d*x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+38*A*cos(d*x+c 
)*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c))) 
^(1/2))+26*A*cos(d*x+c)*sin(d*x+c)*(-1/(1+cos(d*x+c)))^(1/2)+6*C*cos(d*x+c 
)*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c))) 
^(1/2))-6*C*cos(d*x+c)*sin(d*x+c)*(-1/(1+cos(d*x+c)))^(1/2)+19*A*2^(1/2)*a 
rctan(1/2*sin(d*x+c)*2^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+18* 
A*sin(d*x+c)*(-1/(1+cos(d*x+c)))^(1/2)+3*C*2^(1/2)*arctan(1/2*sin(d*x+c)*2 
^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))-14*C*sin(d*x+c)*(-1/(1+co 
s(d*x+c)))^(1/2))*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c)) 
^3/(-1/(1+cos(d*x+c)))^(1/2)
 
3.12.70.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 482, normalized size of antiderivative = 2.77 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 9 \, A - 7 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 19 \, A + 3 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (13 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 9 \, A - 7 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, al 
gorithm="fricas")
 
output
[1/64*(sqrt(2)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^ 
2 + 3*(19*A + 3*C)*cos(d*x + c) + 19*A + 3*C)*sqrt(a)*log(-(a*cos(d*x + c) 
^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d* 
x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x 
 + c) + 1)) - 4*((13*A - 3*C)*cos(d*x + c) + 9*A - 7*C)*sqrt((a*cos(d*x + 
c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c) 
^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2 
)*((19*A + 3*C)*cos(d*x + c)^3 + 3*(19*A + 3*C)*cos(d*x + c)^2 + 3*(19*A + 
 3*C)*cos(d*x + c) + 19*A + 3*C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*( 
(13*A - 3*C)*cos(d*x + c) + 9*A - 7*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos( 
d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]
 
3.12.70.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.12.70.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5530 vs. \(2 (145) = 290\).

Time = 0.88 (sec) , antiderivative size = 5530, normalized size of antiderivative = 31.78 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, al 
gorithm="maxima")
 
output
1/32*((19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 
 2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos( 
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1)) 
*cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2* 
c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2* 
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(lo 
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
 + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d* 
x + 1/2*c) + 1))*cos(d*x + c)^2 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2 
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 
 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^ 
2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2 
*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/ 
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/ 
2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*s 
in(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c) 
^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2...
 
3.12.70.8 Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, al 
gorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)^(5/2)*sqrt(cos(d*x 
+ c))), x)
 
3.12.70.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)) 
,x)
 
output
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)) 
, x)